44 research outputs found

    Modifying factors in pulmonary arterial hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a debilitating disease of small pulmonary resistance arteries with vasoconstriction and vascular remodelling contributing to the disease pathology. A genetic basis for the disease was linked to heterozygous loss of function mutations in the bone morphogenetic protein receptor 2 (BMPR2) gene. The mutation is found in the majority of familial PAH cases and a significant number of apparently sporadic cases. The low penetrance of the disease in families carrying BMPR2 mutations and the absence of mutations in the majority of idiopathic patients indicates that BMPR2 deficiency alone is insufficient to induce PAH. It is generally accepted PAH has a multi-factorial pathology with endogenous and environmental factors acting in concert with genetic pre-disposition to create the disease phenotype. Enhancement of the serotonin (5-HT) system has been implicated in PAH with the 5-HT transporter (5-HTT) receiving the most attention as a modifying gene in the development of PAH and there is compelling animal and human data implicating a role for increased expression of the 5-HTT as a modulating factor. The aim of this study was to investigate if genetic pre-disposition interacts with other additional modifying factors to create the symptoms of PAH. Transgenic mice overexpressing the 5-HTT (5-HTT+), deficient in BMPR2 (BMPR2+/-) or a double transgenic (5-HTT+/BMPR2+/-) were employed in addition to mice lacking tryptophan hydroxylase 1 (Tph1), the rate limiting enzyme for the synthesis of 5-HT, and therefore lacking peripheral 5-HT (Tph1-/-). Additional known or suspected modifying factors assessed in these genetic models were hypoxia, dexfenfluramine (Dfen) and its major metabolite nordexfenfluramine (NDfen), 5-HT, bone morphogenetic protein-2 (BMP-2), KCNQ channels and the role of gender. Mice were examined in vivo for evidence of a pulmonary hypertensive phenotype following exposure to hypoxia and Dfen. Female 5-HTT+ mice were the only group tohave a rise in two indices of PAH - namely right ventricular pressure (RVP) and vascular remodelling - in room air. Female 5-HTT+ mice also had an exaggerated pulmonary hypertensive phenotype in hypoxia. BMPR2+/- mice, were, unexpectedly least susceptible to hypoxic induced increases in RVP although female mice deficient in BMPR2 (both BMPR2+/- and 5-HTT+/BMPR2+/-) had more extensive vascular remodelling under hypoxia compared with WT and 5-HTT+ mice. Male mice did not express the phenotypic changes just outlined. No synergistic effect was observed between 5-HTT+ and BMPR2+/- that resulted in a more pronounced pulmonary hypertensive phenotype. WT and BMPR2+/- mice were chronically oral-dosed with Dfen. Female mice from both genotypes developed similar degrees of PAH. Male mice did not develop elevated RVP but BMPR2+/- males did have evidence of vascular remodelling, although at a lower level than the females. Female Tph1-/- mice did not develop PAH following Dfen indicating Dfen associated PAH is dependent on peripheral 5-HT synthesis. The presence of intact 5-HT synthesis was also associated with an increased vasoconstrictor response to 5-HT in isolated intralobar pulmonary arteries (IPAs), a situation not paralleled with the other serotonergic vasoconstrictors, Dfen and NDfen, indicating differing mechanisms of action underlying the respective vasoconstrictor responses. The vasoconstrictor action of 5-HT, Dfen, NDfen and the KCNQ potassium channel blocker linopirdine were all assessed in IPAs. Pulmonary arteries from BMPR2+/- mice showed enhanced vasoconstriction to 5-HT and NDfen. 5-HTT+ and 5-HTT+/BMPR2+/- mice showed enhanced vasoconstriction to NDfen but decreased vasoconstriction to 5-HT. Female 5-HTT+/BMPR2+/- mice were the only group tested to show significantly greater vasoconstriction to Dfen compared with WT. The vasoconstrictor response to linopirdine was significantly reduced in BMPR2+/- mice but neither linopirdine nor BMP-2 affected 5- HT induced vasoconstriction. Female gender is an established risk factor for PAH. To investigate possible events that may underlie this risk, male (testosterone) and female (estradiol and 2-methoxyestradiol (2-ME)) sex hormones were assessed for their vasoactive properties in IPAs. All three hormones relaxed pre-constricted vessels but only at supraphysiological (>0.1 µM) concentrations. Each hormone also reduced the vasoconstriction exerted by 5-HT at 10-5 M in male mice but not in females. No such effect, however, was observed in either gender at a physiological (10-9 M) concentration. NDfen induced vasoconstriction was also unaffected by 10-9 M estradiol. Finally, male and female mouse lungs were assessed for protein expression of 5-HT and BMPR2 signalling compounds (p-Smad1/5/8, p-ERK1/2 and p-p38 MAPK). Female mouse lungs displayed higher expression of the mitogenic mediator p-ERK1/2 than male mouse lungs with the other proteins unchanged. In conclusion, this study confirms overexpression of the 5-HTT as a trigger for elevated RVP and vascular remodelling in mice and a cause of more severe hypoxic PAH. BMPR2+/- mice are phenotypically normal in room air and show divergent pulmonary effects following hypoxia with loss of BMPR2 seemingly attenuating hypoxic induced increases in RVP but causing a simultaneous worsening of vascular remodelling, this latter effect consistent with the important role BMPR2 has in maintaining vascular integrity. Dfen induced PAH in mice was found to be dependent on peripheral 5-HT synthesis with BMPR2 mutation not acting as a risk factor. Loss of BMPR2 can enhance vasoconstriction to serotonergic agonists and when combined with overexpression of the 5-HTT, leads to a dramatic increase in sensitivity to Dfen induced vasoconstriction. Evidence was also found for altered KCNQ channel function in transgenic animals. Unexpectedly, female gender emerged as the most crucial risk factor for PAH in this thesis

    Resolvin E1 for reducing vascular calcification

    Get PDF
    No abstract available

    "Blow my mind(in)" - Mindin neutralization for the prevention of atherosclerosis?

    Get PDF
    The hallmark features of atherosclerosis include accumulation of low-density lipoprotein (LDL) carrying cholesterol in the vessel wall, formation of lipid laden foam cells and the creation of a pro-inflammatory microenvironment. To date, no effective treatments are clinically available for increasing cholesterol efflux from vascular macrophages and inducing reverse cholesterol transport. In a recent article in Clinical Science, Zhang and colleagues identify the extracellular matrix protein mindin/spondin 2 as a positive regulator of atherosclerosis. Genetic knockout of mindin in apolipoprotein-E (apoE)-/- mice attenuated atherosclerosis, foam cell formation and inflammation within the vessel wall. Conversely, selective overexpression of mindin in macrophages in apoE-/- mice was sufficient to promote a greater severity of atherosclerosis. Interestingly, foam cell formation was closely associated with expression of cholesterol transporters (ABCA1 and ACBG1) that facilitate cholesterol efflux. Liver X receptor-β (LXR-β) is a key modulator of cholesterol transporter expression and formed direct interactions with mindin. Furthermore, the protective effects of mindin deficiency on foam cell formation were blocked by inhibition of LXR-β. This article highlights a novel role for mindin in modulating foam cell formation and atherosclerosis development in mice through direct regulation of LXR-β. Thus far, direct targeting of LXR-β via pharmacological agonists has proven problematic due to the lack of subtype selective inhibitors and associated adverse effects. Indirect targeting of LXR-β, therefore, via mindin inhibition offers a new therapeutic strategy for increasing LXR-β induced cholesterol efflux, reducing foam cell formation and preventing or treating atherosclerosis

    Novel sphingosine-containing analogues selectively inhibit sphingosine kinase (SK) isozymes, induce SK1 proteasomal degradation and reduce DNA synthesis in human pulmonary arterial smooth muscle cells

    Get PDF
    Sphingosine 1-phosphate (S1P) is involved in hyper-proliferative diseases such as cancer and pulmonary arterial hypertension. We have synthesized inhibitors that are selective for the two isoforms of sphingosine kinase (SK1 and SK2) that catalyze the synthesis of S1P. A thiourea adduct of sphinganine (F02) is selective for SK2 whereas the 1-deoxysphinganines 55-21 and 77-7 are selective for SK1. (2S,3R)-1-Deoxysphinganine (55-21) induced the proteasomal degradation of SK1 in human pulmonary arterial smooth muscle cells and inhibited DNA synthesis, while the more potent SK1 inhibitors PF-543 and VPC96091 failed to inhibit DNA synthesis. These findings indicate that moderate potency inhibitors such as 55-21 are likely to have utility in unraveling the functions of SK1 in inflammatory and hyperproliferative disorders

    Perivascular mast cells regulate vein graft neointimal formation and remodeling

    Get PDF
    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling

    Molecular Imaging of Inflammation - current and emerging technologies for diagnosis and treatment

    Get PDF
    Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications

    A novel triple-cell two-dimensional model to study immune-vascular interplay in atherosclerosis

    Get PDF
    Atherosclerosis is a complex inflammatory pathology underpinning cardiovascular diseases (CVD), which are the leading cause of death worldwide. The interplay between vascular stromal cells and immune cells is fundamental to the progression and outcome of atherosclerotic disease, however, the majority of in vitro studies do not consider the implications of these interactions and predominantly use mono-culture approaches. Here we present a simple and robust methodology involving the co-culture of vascular endothelial (ECs) and smooth muscle cells (SMCs) alongside an inflammatory compartment, in our study containing THP-1 macrophages, for studying these complex interactions. Using this approach, we demonstrate that the interaction between vascular stromal and immune cells produces unique cellular phenotypes and soluble mediator profiles not observed in double-cell 2D cultures. Our results highlight the importance of cellular communication and support the growing idea that in vitro research must evolve from mono-culture systems to provide data more representative of the multi-cellular environment found in vivo. The methodology presented, in comparison with established approaches, has the advantage of being technically simple whilst enabling the isolation of pure populations of ECs, SMCs and immune cells directly from the co-culture without cell sorting. The approach described within would be applicable to those studying mechanisms of vascular inflammation, particularly in relation to understanding the impact cellular interaction has on the cumulative immune-vascular response to atherogenic or inflammatory stimuli

    Structure-activity relationships and molecular modeling of sphingosine kinase inhibitors

    Get PDF
    The design, synthesis, and evaluation of the potency of new isoform-selective inhibitors of sphingosine kinases 1 and 2 (SK1 and SK2), the enzyme that catalyzes the phosphorylation of d-erythro-sphingosine to produce the key signaling lipid, sphingosine 1-phosphate, are described. Recently, we reported that 1-(4-octylphenethyl)piperidin-4-ol (RB-005) is a selective inhibitor of SK1. Here we report the synthesis of 43 new analogues of RB-005, in which the lipophilic tail, polar headgroup, and linker region were modified to extend the structure-activity relationship profile for this lead compound, which we explain using modeling studies with the recently published crystal structure of SK1. We provide a basis for the key residues targeted by our profiled series and provide further evidence for the ability to discriminate between the two isoforms using pharmacological intervention

    Murine aortic smooth muscle cells acquire, though fail to present exogenous protein antigens on major histocompatibility complex class II molecules

    Get PDF
    In the present study aortic murine smooth muscle cell (SMC) antigen presentation capacity was evaluated using the Eα-GFP/Y-Ae system to visualize antigen uptake through a GFP tag and tracking of Eα peptide/MHCII presentation using the Y-Ae Ab. Stimulation with IFN-γ (100 ng/mL) for 72 h caused a significant increase in the percentage of MHC class II positive SMCs, compared with unstimulated cells. Treatment with Eα-GFP (100 μg/mL) for 48 h induced a significant increase in the percentage of GFP positive SMCs while it did not affect the percentage of Y-Ae positive cells, being indicative of antigen uptake without its presentation in the context of MHC class II. After IFN-γ-stimulation, ovalbumin- (OVA, 1 mg/mL) or OVA323–339 peptide-(0.5 μg/mL) treated SMCs failed to induce OT-II CD4+ T cell activation/proliferation; this was also accompanied by a lack of expression of key costimulatory molecules (OX40L, CD40, CD70, and CD86) on SMCs. Finally, OVA-treated SMCs failed to induce DO11.10-GFP hybridoma activation, a process independent of costimulation. Our results demonstrate that while murine primary aortic SMCs express MHC class II and can acquire exogenous antigens, they fail to activate T cells through a failure in antigen presentation and a lack of costimulatory molecule expression
    corecore